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Abstract
Corpus-derived  distributional  models  of  semantic  
distance between terms have proved useful in a number  
of  applications.  For  both  theoretical  and  practical  
reasons, it is desirable to extend these models to encode 
discrete concepts and the ways in which they are related  
to one another. In this paper, we present a novel vector  
space model that encodes semantic predications derived  
from MEDLINE by the SemRep system into a compact  
spatial representation. The associations captured by this  
method are of a different and complementary nature to  
those derived by traditional vector space models, and the 
encoding of predication types presents new possibilities  
for knowledge discovery and information retrieval. 

Introduction
The  biomedical  literature  contains  vast  amounts  of 
knowledge  that  could  inform  our  understanding  of 
human  health  and  disease.  Much  of  this  literature  is 
available as electronic text, presenting an opportunity for 
the  development  of  automated  methods  to  extract  and 
encode  knowledge  in  computer-interpretable  form. 
Distributional  models  of  language  are  able  to  extract 
meaningful  estimates  of  the  semantic  relatedness 
between terms from unannotated free text. These models 
have  proved  useful  in  a  variety  of  biomedical 
applications  (for  a  review see  (1)),  and  include  recent 
variants  that  scale  comfortably  to  large  biomedical 
corpora such as the MEDLINE corpus of abstracts (2). 

However,  the  semantic  relatedness  estimated  by  most 
distributional models is of a general nature. These models 
do not encode the type of relationship that exists between 
terms,  which  limits  their  ability  to  support  logical 
inference. Furthermore, while distributional models such 
as  Latent  Semantic  Analysis  (LSA)  simulate  human 
performance  in  many cognitive  tasks  (3),  they  do  not 
represent  the  object-relation-object  triplets  (or 
propositions) that are considered to be the atomic unit of 
thought in cognitive theories of comprehension  (4).  In 
this  paper  we  address  these   issues  by  defining 
Predication-based  Semantic  Indexing  (PSI),  a  novel 
distributional  model of  language that  encodes semantic 
predications  derived  from  MEDLINE  by  the  SemRep 
system  (5) into a  compact  vector  space  representation. 
Associations captured by PSI complement those captured 
by  existing  models,  and  present  new  possibilities  for 
knowledge discovery and information retrieval. 

Background
Many existing  distributional  models  draw estimates  of 
semantic relatedness from co-occurrence  statistics within 
a defined context such as a sliding window or an entire 
document  (1). Recent models (reviewed in  (6)) instead 
define as a context a grammatical relationship produced 
by  a  parser,  but  do  not  encode  the  nature  of  this 
relationship   in  a  retrievable  manner.  Distributional 
models that encode word order using either convolution 
products  (7) or  permutation  of  sparse  random  vectors 
(8) transform  vectors  representing  terms  into  new 
representations  close-to-orthogonal  to  the  original 
vectors.  Consequently  there  is  minimal  overlap  in  the 
information they carry, and additional information related 
to term position can be encoded. These transformations 
are reversible, to facilitate retrieval of this information. 

PSI  is  based  on  Sahlgren  et  al's  model  which  uses 
permutations  as  a  means  to  encode  word  order 
information (8), which in turn is a variant of the Random 
Indexing  (RI)  model  (9).  Sahlgren  et  al's  approach 
provides a simple and elegant solution to the problem of 
reversibly transforming term vectors using permutations 
of the sparse random vectors which form the basis of RI. 
The approach is derived from sliding-window (or term-
term) RI,  derives vector representations for terms from 
their co-occurrence with other terms in a sliding window 
moved  through  the  text.   While  the  sliding  window 
approach is well-established in distributional semantics, 
established methods either use the full term-term space or 
reduce  its  dimensionality  with  the  computationally 
demanding Singular Value Decomposition (SVD). RI is 
able to achieve this dimension reduction step at a fraction 
of the cost of SVD by constructing semantic vectors for 
each term on-the-fly, without the need for a term-by-term 
matrix.  Each  term  in  the  text  corpus  is  assigned  an 
elemental vector of dimensionality d (usually in the order 
of 1000), the dimensionality of  a reduced-dimensional 
semantic space within which the relatedness of terms will 
be measured.  Elemental vectors are sparse: they contain 
mostly zeros, with in the order of 10 non-zero values of 
either +1 or -1. As there are many possible permutations 
of these few non-zero values, elemental vectors tend to 
be close-to-orthogonal to one another:  their  relatedness 
as measured with the commonly used cosine metric tends 
towards  zero.  This  approximates  a  full  term-by-term 
matrix,  but  rather  than  assigning  an  orthogonal 
dimension  to  each  term,  RI  assigns  a  near-orthogonal 



reduced-dimensional  elemental  vector.  To  encode 
additional  information  to  do  with  word  order,  the 
elemental vector for a given term is permuted to produce 
a new vector, almost orthogonal to the vector from which 
it originated.  Consider  vectors below:

V1: [ 1 0 0 0 0 1 0 0 0 0 0 -1 0 0 0]    V2: [ 0 1 0 0 0 0 1 0 0 0 0 0 -1 0 0]

These vectors are orthogonal to one another: as there is 
no  common  non-zero  dimension  between  them,  their 
cosine (or normalized dot-product) will be zero. V2 was 
derived from V1 by moving every value one position to 
the  right,  and  conversely  this  transformation  can  be 
reversed by moving every value in V2 one position to the 
left. This simple procedure is used by Sahlgren  et al to 
encode word-order  information into a  term-term based 
semantic  space.  The  semantic  vector  for  each  term 
consists  of  the normalized  linear  sum of the  permuted 
elemental vector for every term with which it co-occurs, 
with permutation encoding the relative position of each 
term in the sliding window. The reversible nature of this 
transformation  facilitates  order-based  retrieval.  For 
example,  a  rotation  one  position  to  the  right  of  all 
elements of the elemental vector for a term can be used 
to  generate  a  vector  with  high  similarity  to  terms 
occurring one space to the left of it.   Table I provides 
some examples of order-based retrieval in a permutation-
based  space  derived  from  the  MEDLINE  corpus  of 
abstracts using the Semantic Vectors package (10).

? cancer streptococcus ? ? cough

.81:breast

.78:colorectal

.74:prostate

.69:antiprostate

.67:antibreast

.71:pyogenes

.71:agalactiae

.69:pyogens

.65:milleri

.62:acidominimus

.89:whooping

.48:nonproductive

.47:hacking

.44:brassy

.42:barking
Table I: Order-based retrieval from MEDLINE. The “?” 
denotes the relative position of the target term.

In  this  paper,  we  adapt  Sahlgren  et  al's  method  of 
encoding word order information into a vector space to 
encode semantic predications produced by the SemRep 
system  (5),  (11).  SemRep  combines  general  linguistic 
processing,  a  shallow  categorical  parser  and 
underspecified  dependency  grammar,  with  domain-
specific knowledge resources: mappings from free text to 
the UMLS accomplished by the MetaMap software (12), 
the UMLS metathesaurus and semantic network (13) and 
the  Specialist  lexicon  and  lexical  tools  (14).  SemRep 
uses these techniques  to extract  semantic predications, 
from titles and abstracts in the MEDLINE database,  as 
shown in this example drawn from (5). Given the excerpt 
“… anti-inflammatory drugs that have clinical efficacy in  
the  management  of  asthma,....”,  SemRep  extracts  the 
following semantic predication between UMLS concepts:

“Anti-Inflammatory Agents TREATS Asthma”

We present in this paper a description of the theoretical 
and methodological basis of PSI, and include examples 
of  the  sorts  of  information  the  model  encodes  and 
retrieves discussed in context of possible applications. 

Methods
We derived  a  PSI  space  from a  database  of  semantic 
predications  extracted  by  SemRep  from  MEDLINE 
citations  dated  between  2003 and  September  9th 2008. 
13,562,350 predications were extracted from 2,634,406 
citations  by  SemRep.  Of  these,  predications  involving 
negation (such as “DOES NOT TREAT”) are excluded, 
leaving 13,380,712 predications which are encoded into 
the PSI space. We encode this  predication information 
using  permutation-based  RI.  Rather  than  assigning 
elemental  vectors  to  each  term,  we  assign  sparse 
elemental  vectors  (d=500)  to  each  UMLS  concept 
contained in the predications database. We then assign a 
unique number to each of the included predication types 
(such  as  “TREATS”).  We  create  semantic  vectors 
(d=500) for each UMLS concept in the database.  Each 
time a given UMLS concept occurs in a predication, we 
add  to  its  semantic  vector  the  elemental  vector  of  the 
other concept in the predication, permuted according to 
the  predication  type.  For  example,  in  the  predication 
“Isoniazid  TREATS  Tuberculosis”  we  would  add  the 
elemental vector for Tuberculosis (TB) to the semantic 
vector  for  Isoniazid (INH) but  rotate  every element  in 
this  elemental  vector  39  (the  number  assigned  to  the 
predicate “TREATS”) steps  to  the left.  Conversely,  we 
would add to the semantic vector for TB the elemental 
vector for INH rotated 39 steps to the right. In this way 
we can encode the predication connecting these concepts.

We also construct a general distributional model of the 
UMLS concepts in the database of predications using the 
Reflective  Random  Indexing  (RRI)  model  (15),  by 
creating document vectors for each unique PubMed ID in 
the database. Document vectors are created based on the 
terms contained in these citations: elemental vectors are 
assigned  to  each  term,  and  document  vectors  are 
constructed as the normalized linear sum of the elemental 
vector for each term they contain. Rather than using raw 
term  frequency,  we  employ  the  log-entropy  weighting 
scheme, shown to enhance document representations in 
several  applications  (3).  A vector  for  each  concept  is 
constructed as the frequency-weighted normalized linear 
sum of the vector for each document it occurs in. 

PSI requires a modification of the conventional nearest 
neighbor approach, as we are interested in the strongest 
association between concepts across all predications. In 
the  modified  semantic  network  used by SemRep  (16), 
there  are  40  permitted  predications  between  concepts 
when negations (e.g. exercise DOES NOT TREAT hiv) 
are excluded. Semantic distance in PSI is measured by 
extracting all permutations of a concept, and comparing 
the second concept to these to find the predication with 



the  strongest  association.  For  elemental  vectors,  we 
employ a sparse representation used in our previous work 
(2) which represents the dimension and sign of each of 
the 20 non-zero values. This allows for rapid generation 
of all possible permutations by augmenting the value that 
represents the index of each non-zero value. To further 
speed up this process in the EpiphaNet example (Figure 
1), we extract the 500 nearest neighbors to a cue concept 
from  the  general  distributional  space  (this  should 
subsume the predication-based space: every concept in a 
predication  must  co-occur  in  a  citation  with  the  other 
concept concerned). We then perform predication-based 
nearest-neighbor search on these neighbors only. As it is 
possible to search either using elemental vectors as cues 
to  retrieve  semantic  vectors  or  vice-versa,  for  the 
quantitative  evaluations  we assess  associations  in  both 
directions to ensure accessing the strongest association.

Results and Discussion
Predication-based retrieval
In  a  manner  analogous  to  the  order-based  retrieval 
illustrated  previously,  it  is  possible  to  perform 
predication-based  retrieval  using  permutations  to 
determine which UMLS concept the model has encoded 
with strong association to another concept in a particular 
predication relationship.  Table II illustrates predication-
based  retrieval.  For  example,  the  query  “?  TREATS 
Asthma”  retrieves  concepts  for  asthma  treatments 
(sb-240563,  also  known as  Mepolizumab,  has  recently 
been shown to reduce exacerbations in asthma (17)) . 

? TREATS Asthma Metronidazole TREATS ?

1:cetirizine-
pseudoephedrine

0.57:  chronic  intestinal 
amebiasis

1: norisodrine 0.36 : urogenital 
trichomonas nos

1: alvesco 0.35: erythema annulare 
centrifugum

1: salmeterol+fluticasone 
propionate

0.33: vaginalis

1: sb-240563 0.27: endocervicitis, 
unspecified

Table II: Predication-based retrieval with  cosine 
associations between query and target concepts.

Interestingly,  the top ranked results  are not  necessarily 
the  concepts  that  occur  most  frequently  in  this 
predication relationship. Rather, these results reflect the 
extent  to  which  this  relationship  defines  a  particular 
concept, as the model represents concepts in terms of the 
predications  in  which  they  occur  in  an  extensional 
manner.  Concepts  occurring  exclusively in  a  particular 
predication with another concept are likely to rank highly 
in  predication-based  retrieval.  As  this  is  not  ideal  for 
many purposes, our future work will explore variants of 
PSI that select for frequency rather than exclusivity. 

Predication-based Nearest Neighbor Search

It is possible to rapidly characterize a particular concept 
for  exploratory  purposes  by first  finding  the  k-nearest 
neighbors in a general associative space, and searching 
amongst these for the best predications using PSI. Figure 
I illustrates  the  nearest  predication-based  neighbors  of 
the  concept  “staphylococcus_aureus”  which  we  have 
extracted and visualized with the EpiphaNet software we 
have developed for this purpose. EpiphaNet is based on 
the  Prefuse  visualization  library  (18) and  as  in  our 
previous work (2) uses Pathfinder network scaling (19) to 
reveal  the  most  significant  associative  links  within  a 
network  of  near  neighbors.  By reversing the  encoding 
process used in PSI, we are able to retrieve both the type 
and direction of the predication relationship linking these 
concepts. This measure of semantic distance is different 
in  nature  to  those  used  in  prior  distributional  models. 
Rather than conflating many types of association into a 
single  metric,  this  estimate  is  based  on  the  strongest 
typed  association  between  these  concepts  across  all 
predications.  Similar  to  the  way  in  which  existing 
distributional models extract compact vector-based term 
representations  from  large  corpora,  the  PSI  model 
produces  a  compact  representation  for  all  UMLS 
concepts in the 8.8GB database of semantic predications. 
The set of semantic vectors used for the PSI space used 
to  generate  Figure I occupies  300MB only,  and stored 
elemental vectors occupy a fraction of this space due to 
the sparse representation employed. To further assess the 
extent to which  predications are accurately encoded and 
retrieved,  we  extract  at  random  1000  concepts,  and 
retrieve their 20 nearest predication-based neighbors. We 
consider  neighbors  with  a  cosine  association  above  a 
threshold  of  the  mean  cue-to-neighbor  association  for 
these 1000 terms as “retrieved”.  Using the database of 
predications extracted by SemRep as a gold standard, we 
calculate the following metrics:

Figure I: EpiphaNet  for “staphylococcus aureus”



o Precision = retrieved and accurate / all retrieved 
o Recall = predications retrieved / minimum(20, up)

where up denotes the number of unique predications for 
cue term in the database. Results are shown in Table III.

Dimensionality 500 1000 1500

Mean Precision 0.957 0.977 0.997

Mean Recall 0.603 0.643 0.658

Threshold cosine 0.320 0.279 0.265
Table III: Results for 1000 randomly selected concepts.

The model performs better for cue concepts with fewer 
unique predications: recall when only concepts with 20 
or less unique predications are considered is 0.74, 0.8 and 
0.8 at 500, 1000 and 1500 dimensions respectively, with 
precision at  0.95 and above. This suggests that  vectors 
for concepts involved in many predication relationships 
acquire  a  spurious  similarity  to  other  vectors  due  to 
partial overlap between permuted elemental vectors. We 
anticipate  this  overlap  would  reduce  as  dimensionality 
increases.  In  practice  we  find  that  concepts  such  as 
“patient” that are involved in many unique predications 
tend to be uninformative. It is also possible to eliminate 
spurious neighbors by only considering terms that occur 
in a document with the cue term as retrieval candidates. 

Implicit Encoding of Semantic Type
As illustrated by the results of the cosine-based nearest 
neighbor search in Table IV, the PSI space to some extent 
captures the semantic class of UMLS concepts.
 
asthma amitryptiline 

.98: sickle cell anemia

.99 : heart septal defects, atrial

.99: chronic childhood arthritis

.98: diarrhea

.98: constipation

.82: imipramine

.78: nortriptyline

.76: desipramine

.75: clomipramine

.65: amoxapine
Table IV: Nearest-neighbor searches in PSI-space. 
 
The semantic vector for the disease “asthma” is similar to 
that for other diseases (and in this case, symptoms), just 
as “amitryptiline” retrieves other antidepressants through 
nearest  neighbor search.  This finding generalizes  to  a 
degree:  amongst  the  ten-nearest  neighbors  of  1000 
randomly  selected  terms,  an  average  of  37%  share  a 
UMLS  semantic  type  with  the  cue  term.  This  is 
considerably higher than the result of approximately 5% 
obtained when the same evaluation is  performed using 
either RI (9)or RRI (15) (all spaces at d=500), and varies 
across semantic types, with several semantic classes such 
as  “plant”  exhibiting  in  excess  of  80%  agreement 
between cue and neighbor. This is to be expected, as the 
extraction of predications by SemRep is constrained by 
the  UMLS  semantic  type  of  the  subject  and  object. 
However,  further  analysis  of  the  interplay  between 

assigned  UMLS  class  and  predication-based 
distributional  similarity may be a  useful  way to  reveal 
inconsistencies  in  the  assignment  of  semantic  class 
and/or the assignment of predications by SemRep.

Modeling Analogy
We find it is possible to model analogy within the PSI 
space  by  finding  the  predication  that  most  strongly 
associates  two  terms  and  applying  the  rotation  that 
corresponds to this predication to a third. While this work 
is  presently  at  an  early  stage  of  development,  it  has 
produced some interesting results so far (Table V). 

Example Cue Retrieved

Tuberculosis is to 
Isoniazid as.....

Depressive 
disorder is to..

Lexapro

Tuberculosis is to 
Lung X-ray as...

Depressive 
disorder is to..

Psychiatric Interview 
and Evaluation

Table V: Analogical reasoning in PSI-space.

Application to Information Retrieval
Similarly  to  the  way  in  which  distributional  models 
extract  compact vector-based term representations from 
large  corpora,  the  PSI  model  produces  a  compact 
representation  of  the  predication  relations  captured  by 
SemRep. The knowledge encoded in the PSI model could 
be used for  information retrieval  in several  ways.  One 
possibility would be to represent documents in terms of 
the  predications  contained  therein,  and  allow  users  to 
search for documents containing concepts in a  specific 
predication  relationship  with  a  search  concept.  We 
anticipate that once customized for this purpose, PSI will 
retrieve  documents  providing  answers  to  clinical 
questions  such  as  “what  treats  Tuberculosis”  or  “what 
causes Bullous Impetigo”.  Another possibility would be 
the use of the approach taken in  Figure I to categorize 
documents according to the way in which they are related 
to a particular search concept. In our future work we will 
evaluate these approaches on standard test collections. 

Application to Literature-based Knowledge Discovery 
In  our  recent  work  (2),(20),(15) we have  used  general 
distributional models to identify potential discoveries by 
identifying pairs of concepts that are relatively close in 
the space but do not co-occur in any of the documents in 
the database used to generate the models.  Although this 
method  has  proven  to  be  effective  in  identifying 
interesting indirect connections, the interesting ones tend 
to occur along with others of little interest.  In general, 
additional  constraints  are  needed  to  narrow  the 
possibilities. The predications resulting from the methods 
presented  here  offer  a  promising  means  to  limit  the 
indirect connections by  selecting those with appropriate 
predication relationships.  For example, when looking for 
new  treatments  for  a  disorder,  concepts  that  serve  as 
treatments should be given priority over concepts in other 
predications.  With  these  methods,  general  word  space 



similarity can be elaborated into the greater  specificity 
found in semantic network models (21).

Limitations and Future Work
This paper presents the theoretical and methodological 
basis for PSI, a novel distributional model that encodes 
predications produced by SemRep, and provides  some 
illustrative examples and possible applications. Further 
analysis is needed to determine the model parameters that 
optimize performance in each of these tasks. We do not 
evaluate the performance of SemRep, as this has been 
evaluated elsewhere (5,16). In our future work we will 
explore applications of PSI to informatics problems, 
including information retrieval, knowledge discovery and 
biomedical question answering.

Conclusion
PSI  is  a  novel  distributional  model  that  encodes 
predications produced by the SemRep system, providing 
a more specific measure of semantic similarity between 
concepts  than  is  provided  by  existing  distributional 
models,  as  well  as  the  ability  to  retrieve  the  type  of 
predication that  most  strongly associates  two concepts. 
From a  theoretical  perspective,  this  is  desirable  as  the 
unit of analysis in cognitive models is considered to be 
an object-relation-object  triplet,  not  an individual  term. 
From a practical point of view, the additional information 
encoded by PSI is likely to be of benefit for information 
retrieval  and  knowledge  discovery  purposes.   In  our 
future work we will  evaluate the application of PSI to 
these and other informatics problems.
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